首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5256篇
  免费   577篇
  国内免费   702篇
化学   4977篇
晶体学   19篇
力学   250篇
综合类   102篇
数学   547篇
物理学   640篇
  2024年   6篇
  2023年   58篇
  2022年   95篇
  2021年   165篇
  2020年   203篇
  2019年   173篇
  2018年   130篇
  2017年   167篇
  2016年   223篇
  2015年   208篇
  2014年   229篇
  2013年   316篇
  2012年   451篇
  2011年   269篇
  2010年   247篇
  2009年   298篇
  2008年   371篇
  2007年   308篇
  2006年   326篇
  2005年   285篇
  2004年   274篇
  2003年   241篇
  2002年   241篇
  2001年   148篇
  2000年   141篇
  1999年   118篇
  1998年   111篇
  1997年   100篇
  1996年   95篇
  1995年   90篇
  1994年   74篇
  1993年   71篇
  1992年   50篇
  1991年   49篇
  1990年   42篇
  1989年   23篇
  1988年   16篇
  1987年   20篇
  1986年   12篇
  1985年   14篇
  1984年   14篇
  1983年   13篇
  1982年   18篇
  1981年   12篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1976年   1篇
  1974年   2篇
  1936年   1篇
排序方式: 共有6535条查询结果,搜索用时 31 毫秒
1.
Different strategies for the preparation of efficient and robust immobilized biocatalysts are here reviewed. Different physico-chemical approaches are discussed.i.- The stabilization of enzyme by any kind of immobilization on pre-existing porous supports.ii.- The stabilization of enzymes by multipoint covalent attachment on support surfaces.iii.- Additional stabilization of immobilized-stabilized enzyme by physical or chemical modification with polymers.These three strategies can be easily developed when enzymes are immobilized in pre-existing porous supports. In addition to that, these immobilized-stabilized derivatives are optimal to develop enzyme reaction engineering and reactor engineering. Stabilizations ranging between 1000 and 100,000 folds regarding diluted soluble enzymes are here reported.  相似文献   
2.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
3.
We present a simple and cost‐effective curvature calculation approach for simulations of interfacial flows on structured and unstructured grids. The interface is defined using volume fractions, and the interface curvature is obtained as a function of the gradients of volume fractions. The gradient computation is based on a recently proposed gradient recovery method that mimicks the least squares approach without the need to solve a system of equations and is quite easy to implement on arbitrary polygonal meshes. The resulting interface curvature is used in a continuum surface force formulation within the framework of a well‐balanced finite‐volume algorithm to simulate multiphase flows dominated by surface tension. We show that the proposed curvature calculation is at least as accurate as some of the existing approaches on unstructured meshes while being straightforward to implement on any mesh topology. Numerical investigations also show that spurious currents in stationary problems that are dependent on the curvature calculation methodology are also acceptably low using the proposed approach. Studies on capillary waves and rising bubbles in viscous flows lend credence to the ability of the proposed method as an inexpensive, robust, and reasonably accurate approach for curvature calculation and numerical simulation of multiphase flows.  相似文献   
4.
First, by using linear and trilinear estimates in Bourgain type analytic and Gevrey spaces, the local well‐posedness of the Cauchy problem for the modified Kawahara equation on the line is established for analytic initial data that can be extended as holomorphic functions in a strip around the x‐axis. Next we use this local result and a Gevrey approximate conservation law to prove that global solutions exist. Furthermore, we obtain explicit lower bounds for the radius of spatial analyticity given by , where can be taken arbitrarily small and c is a positive constant.  相似文献   
5.
Abstract

We study the inverse problem of parameter identification in noncoercive variational problems that commonly appear in applied models. We examine the differentiability of the set-valued parameter-to-solution map using the first-order and the second-order contingent derivatives. We explore the inverse problem using the output least-squares and the modified output least-squares objectives. By regularizing the noncoercive variational problem, we obtain a single-valued regularized parameter-to-solution map and investigate its smoothness and boundedness. We also consider optimization problems using the output least-squares and the modified output least-squares objectives for the regularized variational problem. We give a complete convergence analysis showing that for the output least-squares and the modified output least-squares, the regularized minimization problems approximate the original optimization problems suitably. We also provide the first-order and the second-order adjoint method for the computation of the first-order and the second-order derivatives of the output least-squares objective. We provide discrete formulas for the gradient and the Hessian calculation and present numerical results.  相似文献   
6.
A series of chalcone ligands and their corresponding vanadyl complexes of composition [VO (LI–IV)2(H2O)2]SO4 (where LI = 1,3‐Diphenylprop‐2‐en‐1‐one, LII = 3‐(2‐Hydroxy‐phenyl)‐1‐phenyl‐propenone, LIII = 3‐(3‐Nitro‐phenyl)‐1‐phenyl‐propenone, LIV = 3‐(4‐Methoxy‐phenyl)‐1‐phenyl‐propenone) have been synthesized and characterized using various spectroscopic (Fourier‐transform infrared, electrospray ionization mass, nuclear magnetic resonance, electron paramagnetic resonance, thermogravimetric analysis, vibrating sample magnetometer) and physico‐analytic techniques. Antidiabetic activities of synthesized complexes along with chalcones were evaluated by performing in vitro and in silico α‐amylase and α‐glucosidase inhibition studies. The obtained results displayed moderate to significant inhibition activity against both the enzymes by vanadyl chalcone complexes. The most potent complexes were further investigated for the enzyme kinetic studies and displayed the mixed inhibition for both the enzymes. Further, antioxidant activity of vanadyl chalcone complexes was evaluated for their efficiency to release oxidative stress using 2,2‐diphenyl‐1‐picryl‐hydrazyl‐hydrate assay, and two complexes (Complexes 2 and 4 ) have demonstrated remarkable antioxidant activity. All the complexes were found to possess promising antidiabetic and antioxidant potential.  相似文献   
7.
At the redox-active center of thioredoxin reductase (TrxR), a selenenyl sulfide (Se−S) bond is formed between Cys497 and Sec498, which is activated into the thiolselenolate state ([SH,Se]) by reacting with a nearby dithiol motif ([SHCys59,SHCys64]) present in the other subunit. This process is achieved through two reversible steps: an attack of a cysteinyl thiol of Cys59 at the Se atom of the Se−S bond and a subsequent attack of a remaining thiol at the S atom of the generated mixed Se−S intermediate. However, it is not clear how the kinetically unfavorable second step progresses smoothly in the catalytic cycle. A model study that used synthetic selenenyl sulfides, which mimic the active site structure of human TrxR comprising Cys497, Sec498, and His472, suggested that His472 can play a key role by forming a hydrogen bond with the Se atom of the mixed Se−S intermediate to facilitate the second step. In addition, the selenenyl sulfides exhibited a defensive ability against H2O2-induced oxidative stress in cultured cells, which suggests the possibility for medicinal applications to control the redox balance in cells.  相似文献   
8.
Outcomes of chemical reactions are generally dominated by the intrinsic reactivities of reaction partners, but enzymes frequently override such constraints to transform less reactive molecules in the presence of more reactive ones. Despite the attractiveness of such catalysis, it is difficult to build synthetic catalysts with these features. Micellar imprinting is a powerful method to create template-complementary binding sites inside protein-sized water-soluble nanoparticles. When a photocleavable functional monomer was used to bind two phosphonate/phosphate templates as transition-state analogues, active sites with predetermined size and shape were formed inside doubly cross-linked micelles through molecular imprinting. Postmodification replaced the binding group with a catalytic pyridyl group, forming highly selective artificial esterases. The catalysts displayed enzyme-like kinetics and turnover numbers that were in the hundreds. The selectivity of the catalysts, derived from the substrate-complementary imprinted active sites, enabled transformation of less reactive esters in the presence of more reactive ones.  相似文献   
9.
A self-assembled Fe4L6 cage complex internally decorated with acid functions is capable of accelerating the thioetherification of activated alcohols, ethers and amines by up to 1000-fold. No product inhibition is seen, and effective supramolecular catalysis can occur with as little as 5 % cage. The substrates are bound in the host with up to micromolar affinities, whereas the products show binding that is an order of magnitude weaker. Most importantly, the cage host alters the molecularity of the reaction: whereas the reaction catalyzed by simple acids is a unimolecular, SN1-type substitution process, the rate of the host-mediated process is dependent on the concentration of nucleophile. The molecularity of the cage-catalyzed reaction is substrate-dependent, and can be up to bimolecular. In addition, the catalysis can be prevented by a large excess of nucleophile, where substrate inhibition dominates, and the use of tritylated anilines as substrates causes a negative feedback loop, whereby the liberated product destroys the catalyst and stops the reaction.  相似文献   
10.
In this paper, we construct a high-order moving mesh method based on total variation diminishing Runge-Kutta and weighted essential nonoscillatory reconstruction for compressible fluid system. Beginning with the integral form of fluid system, we get the semidiscrete system with an arbitrary mesh velocity. We use weighted essential nonoscillatory reconstruction to get the space accuracy on moving meshes, and the time accuracy is obtained by modified Runge-Kutta method; the mesh velocity is determined by moving mesh method. One- and two-dimensional numerical examples are presented to demonstrate the efficient and accurate performance of the scheme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号